Amyloid Beta-Mediated Epigenetic Alteration of Insulin-Like Growth Factor Binding Protein 3 Controls Cell Survival in Alzheimer's Disease

نویسندگان

  • Hye Youn Sung
  • Eun Nam Choi
  • Dahyun Lyu
  • Inhee Mook-Jung
  • Jung-Hyuck Ahn
چکیده

Swedish double mutation (KM670/671NL) of amyloid precursor protein (APP) is reported to increase toxic amyloid β (Aβ) production via aberrant cleavage at the β-secretase site and thereby cause early-onset Alzheimer's disease (AD). However, the underlying molecular mechanisms leading to AD pathogenesis remains largely unknown. Previously, our transcriptome sequence analyses revealed global expressional modifications of over 600 genes in APP-Swedish mutant-expressing H4 (H4-sw) cells compared to wild type H4 cells. Insulin-like growth factor binding protein 3 (IGFBP3) is one gene that showed significantly decreased mRNA expression in H4-sw cells. In this study, we investigated the functional role of IGFBP3 in AD pathogenesis and elucidated the mechanisms regulating its expression. We observed decreased IGFBP3 expression in the H4-sw cell line as well as the hippocampus of AD model transgenic mice. Treatment with exogenous IGFBP3 protein inhibited Aβ1-42- induced cell death and caspase-3 activity, whereas siRNA-mediated suppression of IGFBP3 expression induced cell death and caspase-3 cleavage. In primary hippocampal neurons, administration of IGFBP3 protein blocked apoptotic cell death due to Aβ1-42 toxicity. These data implicate a protective role for IGFBP3 against Aβ1-42-mediated apoptosis. Next, we investigated the regulatory mechanisms of IGFBP3 expression in AD pathogenesis. We observed abnormal IGFBP3 hypermethylation within the promoter CpG island in H4-sw cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored IGFBP3 expression at both the mRNA and protein levels. Chronic exposure to Aβ1-42 induced IGFBP3 hypermethylation at CpGs, particularly at loci -164 and -173, and subsequently suppressed IGFBP3 expression. Therefore, we demonstrate that expression of anti-apoptotic IGFBP3 is regulated by epigenetic DNA methylation, suggesting a mechanism that contributes to AD pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...

متن کامل

Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways.

Tg2576 mice overexpress a mutant form of human amyloid precursor protein with the Swedish mutation (APP(Sw)), resulting in high beta-amyloid (Abeta) levels in the brain. Despite this, amyloid plaques do not develop until 12 months of age, and there is no neuronal loss in mice as old as 16 months. Gene expression profiles in the hippocampus and cerebellum of 6-month-old APP(Sw) mice were compare...

متن کامل

Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis.

Insulin-like growth factor-binding protein-3 (IGFBP-3) regulates IGF bioactivity and also independently modulates cell growth and survival. By using a yeast two-hybrid screen to identify IGFBP-3-interacting proteins, we cloned humanin (HN) as an IGFBP-3-binding partner. HN is a 24-aa peptide that has been shown to specifically inhibit neuronal cell death induced by familial Alzheimer's disease ...

متن کامل

Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer's V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner.

It has been found that insulin-like growth factor I (IGF-I) exerts cytoprotection against Abeta amyloid-induced neuronal cell death. Deposits of Abeta amyloid are one of the pathological hallmarks of Alzheimer's disease (AD). Here, we examined whether IGF-I exerts protective activity against cell death induced by a familial AD (FAD)-linked mutant of amyloid precursor protein (APP), and we found...

متن کامل

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014